On the non-existence of a projective (75, 4,12, 5) set in PG(3, 7)

نویسندگان

  • Aaron C.S. Chan
  • James A. Davis
  • Jonathan Jedwab
چکیده

We show by a combination of theoretical argument and computer search that if a projective (75, 4, 12, 5) set in PG(3, 7) exists then its automorphism group must be trivial. This corresponds to the smallest open case of a coding problem posed by H. Ward in 1998, concerning the possible existence of an infinite family of projective two-weight codes meeting the Griesmer bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on $m_r(2,29)$

 An $(n, r)$-arc is a set of $n$ points of a projective plane such that some $r$, but no $r+1$ of them, are collinear. The maximum size of an $(n, r)$-arc in  PG(2, q) is denoted by $m_r(2,q)$. In this paper thirteen new $(n, r)$-arc in  PG(2,,29) and a table with the best known lower and upper bounds on $m_r(2,29)$ are presented. The results are obtained by non-exhaustive local computer search.

متن کامل

The nonexistence of transitive 2-parallelisms of PG(5, 3)

2-spread is a set of 2-dimensional subspaces of PG(d, q), which partition the point set. A 2-parallelism is a partition of the set of 2-dimensional subspaces by 2-spreads. Johnson and Montinaro in their paper ”The transitive t-parallelisms of a finite projective space” point out that the existence of transitive 2-parallelisms of PG(5, 3) is an open question. In the present paper we establish th...

متن کامل

Minimal blocking sets in PG(2, 9)

We classify the minimal blocking sets of size 15 in PG(2, 9). We show that the only examples are the projective triangle and the sporadic example arising from the secants to the unique complete 6-arc in PG(2, 9). This classification was used to solve the open problem of the existence of maximal partial spreads of size 76 in PG(3, 9). No such maximal partial spreads exist [13]. In [14], also the...

متن کامل

On the non-existence of a maximal partial spread of size 76 in PG(3, 9)

We prove the non-existence of maximal partial spreads of size 76 in PG(3, 9). Relying on the classification of the minimal blocking sets of size 15 in PG(2, 9) [22], we show that there are only two possibilities for the set of holes of such a maximal partial spread. The weight argument of Blokhuis and Metsch [3] then shows that these sets cannot be the set of holes of a maximal partial spread o...

متن کامل

New Large (n, r)-arcs in PG(2, q)

An $(n, r)$-arc is a set of $n$ points of a projective plane such that some $r$, but no $r+1$ of them, are collinear. The maximum size of an $(n, r)$-arc in  $PG(2, q)$ is denoted by $m_r(2,q)$.  In this paper we present  a new $(184,12)$-arc in PG$(2,17),$  a new $(244,14)$-arc and a new $(267,15$)-arc in $PG(2,19).$

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015